凡是根據(jù)物質(zhì)與輻射能的相互作用所建立起來的定性、定量和結(jié)構(gòu)分析的方法,均可稱為光學(xué)分析法。光學(xué)分析法是基于物質(zhì)發(fā)射的電磁輻射(electromagnetic radiation)或物質(zhì)與輻射相互作用產(chǎn)生的輻射信號(hào)或發(fā)生的信號(hào)變化來測(cè)定物質(zhì)的性質(zhì)、含量和結(jié)構(gòu)的儀器分析方法。
電磁輻射是一種以電磁波的形式在空間高速傳播的粒子流,具有波動(dòng)性和微粒性。
1.線光譜
當(dāng)輻射物質(zhì)是單個(gè)的氣態(tài)原子時(shí),產(chǎn)生紫外、可見光區(qū)的線光譜。
通過內(nèi)層電子的躍遷可以產(chǎn)生X射線線光譜。
2.帶光譜
帶光譜是由許多量子化的振動(dòng)能級(jí)疊加在分子的基態(tài)電子能級(jí)上而形成的。
3.連續(xù)光譜
固體加熱至熾熱會(huì)發(fā)射連續(xù)光譜,這類熱輻射稱為黑體輻射。通過熱能激發(fā)凝聚體中無數(shù)原子和分之振蕩產(chǎn)生黑體輻射。
被加熱的固體發(fā)射連續(xù)光譜,它們是紅外、可見及長(zhǎng)波側(cè)紫外光區(qū)分析儀器的重要光源。
根據(jù)發(fā)射光譜所在的光譜區(qū)和激發(fā)方法不同,發(fā)射光譜法分為:
1. g射線光譜法
天然或人工放射性物質(zhì)的原子核在衰變的過程中發(fā)射a和b粒子后,往往使自身的核激發(fā),然后該核通過發(fā)射g射線回到基態(tài)。測(cè)量這種特征g射線的能量(或波長(zhǎng)),可以進(jìn)行定性分析,測(cè)量g射線的強(qiáng)度,可以進(jìn)行定量分析。
2. X射線熒光分析法
原子受高能輻射激發(fā),其內(nèi)層電子能級(jí)躍遷,即發(fā)射出特征X射線,稱為X射線熒光。用X射線管發(fā)生的一次X射線來激發(fā)X射線熒光是最常用的方法。測(cè)量X射線的能量(或波長(zhǎng))可以進(jìn)行定性分析,測(cè)量其強(qiáng)度可以進(jìn)行定量分析。
3. 原子發(fā)射光譜分析法
用火焰、電弧、等離子炬等作為激發(fā)源,使氣態(tài)原子或離子的外層電子 受激發(fā)發(fā)射特征光學(xué)光譜,利用這種光譜進(jìn)行分析的方法叫做原子發(fā)射光譜分析法。波長(zhǎng)范圍在190 - 900nm,可用于定性和定量分析。
4. 原子熒光分析法
氣態(tài)自由原子吸收特征波長(zhǎng)的輻射后,原子的外層電子從基態(tài)或低能態(tài)躍遷到較高能態(tài),約經(jīng)10-8 s,又躍遷至基態(tài)或低能態(tài),同時(shí)發(fā)射出與原激發(fā)波長(zhǎng)相同(共振熒光)或不同的輻射(非共振熒光),稱為原子熒光。
發(fā)射的波長(zhǎng)在紫外和可見光區(qū)。在與激發(fā)光源成一定角度(通常為90°)的方向測(cè)量熒光的強(qiáng)度,可以進(jìn)行定量分析。
5. 分子熒光分析法
某些物質(zhì)被紫外光照射后,物質(zhì)分子吸收了輻射而成為激發(fā)態(tài)分子,然后回到基態(tài)的過程中發(fā)射出比入射波長(zhǎng)更長(zhǎng)的熒光。測(cè)量熒光的強(qiáng)度進(jìn)行分析的方法稱為熒光分析法。波長(zhǎng)在光學(xué)光譜區(qū)。
6. 分子磷光分析法
物質(zhì)吸收光能后,基態(tài)分子中的一個(gè)電子被激發(fā)躍遷至第一激發(fā)單重態(tài)軌道,由第一激發(fā)單重態(tài)的最低能級(jí),經(jīng)系統(tǒng)間交叉躍遷至第一激發(fā)三重態(tài)(系間竄躍),并經(jīng)過振動(dòng)弛豫至最低振動(dòng)能級(jí),因此,由此激發(fā)態(tài)躍遷回至基態(tài)時(shí),便發(fā)射磷光。
根據(jù)磷光強(qiáng)度進(jìn)行分析的方法成為磷光分析法。它主要用于環(huán)境分析、藥物研究等方面的有機(jī)化合物的測(cè)定。
7. 化學(xué)發(fā)光分析法
由化學(xué)反應(yīng)提供足夠的能量,使其中一種反應(yīng)的分子的電子被激發(fā),形成激發(fā)態(tài)分子。激發(fā)態(tài)分子躍回基態(tài)時(shí),就發(fā)出一定波長(zhǎng)的光。其發(fā)光強(qiáng)度隨時(shí)間變化,并可得到較強(qiáng)的發(fā)光(峰值)。
在合適的條件下,峰值與被分析物濃度成線性關(guān)系,可用于定量分析。
由于化學(xué)發(fā)光反應(yīng)類型不同,發(fā)射光譜范圍為400 - 1400nm。
將一束不同波長(zhǎng)的紅外射線照射到物質(zhì)的分子上,某些特定波長(zhǎng)的紅外射線被吸收,形成這一分子的紅外吸收光譜。每種分子都有由其組成和結(jié)構(gòu)決定的獨(dú)有的紅外吸收光譜,據(jù)此可以對(duì)分子進(jìn)行結(jié)構(gòu)分析和鑒定。
1 、原子吸收光譜的產(chǎn)生
基態(tài)原子吸收其共振輻射,外層電子由基態(tài)躍遷至激發(fā)態(tài)而產(chǎn)生原子吸收光譜。原子吸收光譜位于光譜的紫外區(qū)和可見區(qū)。
2 、原子吸收光譜的譜線輪廓
原子吸收光譜線并不是嚴(yán)格地幾何意義上的線(幾何線無寬度),而是有相當(dāng)窄的頻率或波長(zhǎng)范圍,即有一定的寬度。一束不同頻率強(qiáng)度為I0的平行光通過厚度為l的原子蒸氣,一部分光被吸收,透過光的強(qiáng)度Iv服從吸收定律
Iv = I0·exp(-kvl)
式中kv是基態(tài)原子對(duì)頻率為v的光的吸收系數(shù)。不同元素原子吸收不同頻率的光,透過光強(qiáng)度對(duì)吸收光頻率作圖。
3 、原子吸收光譜的測(cè)量
(1) 積分吸收
在吸收線輪廓內(nèi),吸收系數(shù)的積分稱為積分吸收系數(shù),簡(jiǎn)稱為積分吸收,它表示吸收的全部能量。從理論上可以得出,積分吸收與原子蒸氣中吸收輻射的原子數(shù)成正比。
?。?) 峰值吸收
1955年Walsh A提出,在溫度不太高的穩(wěn)定火焰條件下,峰值吸收系數(shù)與火焰中被測(cè)元素的原子濃度也成正比。吸收線中心波長(zhǎng)處的吸收系數(shù)K0為峰值吸收系數(shù),簡(jiǎn)稱峰值吸收。前面指出,在通常原子吸收測(cè)定條件下,原子吸收線輪廓取決于Doppler寬度峰值吸收系數(shù)與原子濃度成正比。
?。?)銳線光源
峰值吸收的測(cè)定是至關(guān)重要的,在分子光譜中光源都是使用連續(xù)光譜,連續(xù)光譜的光源很難測(cè)準(zhǔn)峰值吸收,Walsh還提出用銳線光源測(cè)量峰值吸收,從而解決了原子吸收的實(shí)用測(cè)量問題。
銳線光源是發(fā)射線半寬度遠(yuǎn)小于吸收線半寬度的光源,如空心陰極燈。在使用銳線光源時(shí),光源發(fā)射線半寬度很小,并且發(fā)射線與吸收線的中心頻率一致。這時(shí)發(fā)射線的輪廓可看作一個(gè)很窄的矩形,即峰值吸收系數(shù)Kv在此輪廓內(nèi)不隨頻率而改變,吸收只限于發(fā)射線輪廓內(nèi)。這樣,一定的K0即可測(cè)出一定的原子濃度。
轉(zhuǎn)載注明:http://www.rkdu.cn/